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The COVID‑19 social media 
infodemic
Matteo Cinelli1,2, Walter Quattrociocchi1,2,3*, Alessandro Galeazzi4, Carlo Michele Valensise5, 
Emanuele Brugnoli1, Ana Lucia Schmidt2, Paola Zola6, Fabiana Zollo1,2,7 & Antonio Scala1,3

We address the diffusion of information about the COVID‑19 with a massive data analysis on Twitter, 
Instagram, YouTube, Reddit and Gab. We analyze engagement and interest in the COVID‑19 topic 
and provide a differential assessment on the evolution of the discourse on a global scale for each 
platform and their users. We fit information spreading with epidemic models characterizing the basic 
reproduction number R

0
 for each social media platform. Moreover, we identify information spreading 

from questionable sources, finding different volumes of misinformation in each platform. However, 
information from both reliable and questionable sources do not present different spreading patterns. 
Finally, we provide platform‑dependent numerical estimates of rumors’ amplification.

The World Health Organization (WHO) defined the SARS-CoV-2 virus outbreak as a severe global  threat1. As 
foreseen in 2017 by the global risk report of the World Economic forum, global risks are interconnected. In 
particular, the case of the COVID-19 epidemic (the infectious disease caused by the most recently discovered 
human coronavirus) is showing the critical role of information diffusion in a disintermediated news  cycle2.

The term infodemic3,4 has been coined to outline the perils of misinformation phenomena during the man-
agement of disease  outbreaks5–7, since it could even speed up the epidemic process by influencing and frag-
menting social  response8. As an example, CNN has recently anticipated a rumor about the possible lock-down 
of Lombardy (a region in northern Italy) to prevent  pandemics9, publishing the news hours before the official 
communication from the Italian Prime Minister. As a result, people overcrowded trains and airports to escape 
from Lombardy toward the southern regions before the lock-down was put in place, disrupting the government 
initiative aimed to contain the epidemics and potentially increasing contagion. Thus, an important research 
challenge is to determine how people seek or avoid information and how those decisions affect their  behavior10, 
particularly when the news cycle—dominated by the disintermediated diffusion of information—alters the way 
information is consumed and reported on.

The case of the COVID-19 epidemic shows the critical impact of this new information environment. The 
information spreading can strongly influence people’s behavior and alter the effectiveness of the countermeas-
ures deployed by governments. To this respect, models to forecast virus spreading are starting to account for 
the behavioral response of the population with respect to public health interventions and the communication 
dynamics behind content  consumption8,11,12.

Social media platforms such as YouTube and Twitter provide direct access to an unprecedented amount of 
content and may amplify rumors and questionable information. Taking into account users’ preferences and atti-
tudes, algorithms mediate and facilitate content promotion and thus information  spreading13. This shift from the 
traditional news paradigm profoundly impacts the construction of social  perceptions14 and the framing of narra-
tives; it influences policy-making, political communication, as well as the evolution of public  debate15,16, especially 
when issues are  controversial17. Users online tend to acquire information adhering to their  worldviews18,19, to 
ignore dissenting  information20,21 and to form polarized groups around shared  narratives22,23. Furthermore, when 
polarization is high, misinformation might easily  proliferate24,25. Some studies pointed out that fake news and 
inaccurate information may spread faster and wider than fact-based  news26. However, this might be platform-
specific effect. The definition of “Fake News” may indeed be inadequate since political debate often resorts 
to labelling opposite news as unreliable or  fake27. Studying the effect of the social media environment on the 
perception of polarizing topics is being addressed also in the case of COVID-19. The issues related to the cur-
rent infodemics are indeed being tackled by the scientific literature from multiple perspectives including the 
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dynamics of hatespeech and conspiracy  theories28,29, the effect of bots and automated  accounts30, and the threats 
of misinformation in terms of diffusion and opinions  formation31,32.

In this work we provide an in-depth analysis of the social dynamics in a time window where narratives and 
moods in social media related to the COVID-19 have emerged and spread. While most of the studies on misin-
formation diffusion focus on a single  platform17,26,33, the dynamics behind information consumption might be 
particular to the environment in which they spread on. Consequently, in this paper we perform a comparative 
analysis on five social media platforms (Twitter, Instagram, YouTube, Reddit and Gab) during the COVID-19 
outbreak. The dataset includes more than 8 million comments and posts over a time span of 45 days. We analyze 
user engagement and interest about the COVID-19 topic, providing an assessment of the discourse evolution 
over time on a global scale for each platform. Furthermore, we model the spread of information with epidemic 
models, characterizing for each platform its basic reproduction number ( R0 ), i.e. the average number of second-
ary cases (users that start posting about COVID-19) an “infectious” individual (an individual already posting 
on COVID-19) will create. In epidemiology, R0 = 1 is a threshold parameter. When R0 < 1 the disease will die 
out in a finite period of time, while the disease will spread for R0 > 1 . In social media, R0 > 1 will indicate the 
possibility of an infodemic.

Finally, coherently with the classification provided by the fact-checking organization Media Bias/Fact  Check34 
that classifies news sources based on the truthfulness and bias of the information published, we split news outlets 
into two groups. These groups are either associated to the diffusion of (mostly) reliable or (mostly) questionable 
contents and we characterize the spreading of information regarding COVID-19 relying on this classification. 
We find that users in mainstream platforms are less susceptible to the diffusion of information from question-
able sources and that information deriving from news outlets marked either as reliable or questionable do not 
present significant difference in the way it spreads.

Our findings suggest that the interaction patterns of each social media combined with the peculiarity of the 
audience of each platform play a pivotal role in information and misinformation spreading. We conclude the 
paper by measuring rumor’s amplification parameters for COVID-19 on each social media platform.

Results
We analyze mainstream platforms such as Twitter, Instagram and YouTube as well as less regulated social media 
platforms such as Gab and Reddit. Gab is a crowdfunded social media whose structure and features are Twitter-
inspired. It performs very little control on content posted; in the political spectrum, its user base is considered 
to be far-right. Reddit is an American social news aggregation, web content rating, and discussion website based 
on collective filtering of information.

We perform a comparative analysis of information spreading dynamics around the same argument in differ-
ent environments having different interaction settings and audiences. We collect all pieces of content related to 
COVID-19 from the 1st of January to the 14th of February. Data have been collected filtering contents accord-
ingly to a selected sample of Google Trends’ COVID-19 related queries such as: coronavirus, coronavirusout-
break, imnotavirus, ncov, ncov-19, pandemic, wuhan. The deriving dataset is then composed of 1,342,103 posts 
and 7,465,721 comments produced by 3,734,815 users. For more details regarding the data collection refer to 
Methods.

Interaction patterns. First, we analyze the interactions (i.e., the engagement) that users have with COVID-
19 topics on each platform. The upper panel of Fig. 1 shows users’ engagement around the COVID-19 topic. 
Despite the differences among platforms, we observe that they all display a rather similar distribution of the 
users’ activity characterized by a long tail. This entails that users behave similarly for what concern the dynamics 
of reactions and content consumption. Indeed, users’ interactions with the COVID-19 content present attention 
patterns similar to any other  topic35. The highest volume of interactions in terms of posting and commenting can 
be observed on mainstream platforms such as YouTube and Twitter.

Then, to provide an overview of the debate concerning the disease outbreak, we extract and analyze the topics 
related to the COVID-19 content by means of Natural Language Processing techniques. We build word embed-
ding for the text corpus of each platform, i.e. a word vector representation in which words sharing common 
contexts are in close proximity. Moreover, by running clustering procedures on these vector representations, we 
separate groups of words and topics that are perceived as more relevant for the COVID-19 debate. For further 
details refer to Methods. The results (Fig. 1, middle panel) show that topics are quite similar across each social 
media platform. Debates range from comparisons to other viruses, requests for God blessing, up to racism, while 
the largest volume of interaction is related to the lock-down of flights.

Finally, to characterize user engagement with the COVID-19 on the five platforms, we compute the cumulative 
number of new posts each day (Fig. 1, lower panel). For all platforms, we find a change of behavior around the 
20th of January, that is the day that the World Health Organization (WHO) issued its first situation report on the 
COVID-1936. The largest increase in the number of posts is on the 21st of January for Gab, the 24th January for 
Reddit, the 30th January for Twitter, the 31th January for YouTube and the 5th of February for Instagram. Thus, 
social media platforms seem to have specific timings for content consumption; such patterns may depend upon 
the difference in terms of audience and interaction mechanisms (both social and algorithmic) among platforms.

Information spreading. Efforts to simulate the spreading of information on social media by reproducing 
real data have mostly applied variants of standard epidemic  models37–40. Coherently, we analyze the observed 
monotonic increasing trend in the way new users interact with information related to the COVID-19 by using 
epidemic models. Unlike previous works, we do not only focus on models that imply specific growth mecha-
nisms, but also on phenomenological models that emphasize the reproducibility of empirical  data41.
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Most of the epidemiological models focus on the basic reproduction number R0 , representing the expected 
number of new infectors directly generated by an infected individual for a given time  period42. An epidemic 
occurs if R0 > 1,—i.e., if an exponential growth in the number of infections is expected at least in the initial 
phase. In our case, we try to model the growth in number of people publishing a post on a subject as an infec-
tive process, where people can start publishing after being exposed to the topic. While in real epidemics R0 > 1 
highlights the possibility of a pandemic, in our approach R0 > 1 indicates the emergence of an infodemic. We 
model the dynamics both with the phenomenological model  of43 (from now on referred to as the EXP model) 
and with the standard SIR (Susceptible, Infected, Recovered) compartmental  model44. Further details on the 
modeling approach can be found in Methods.

As shown in Fig. 2, each platform has its own basic reproduction number R0 . As expected, all the values of R0 
are supercritical—even considering confidence intervals (Table 1)—signaling the possibility of an infodemic. This 
observation may facilitate the prediction task of information spreading during critical events. Indeed, according 
to this result we can consider information spreading patterns on each social media to predict social response 
when implementing crisis management plans.

While R0 is a good proxy for the engagement rate and a good predictor for epidemic-like information spread-
ing, social contagion phenomena might be in general more  complex45–47. For instance, in the case of Instagram, 
we observe an abrupt jump in the number of new users that cannot be explained with continuous models like 
the standard epidemic ones; accordingly, the SIR model estimates a value of R0 ∼ 102 that is way beyond what 
has been observed in any real-world epidemic.

Figure 1.  Upper panel: activity (likes, comments, reposts, etc.) distribution for each social media. Middle panel: 
most discussed topics about COVID-19 on each social media. Lower panel: cumulative number of content 
(posts, tweets, videos, etc.) produced from the 1st of January to the 14th of February. Due to the Twitter API 
limitations in gathering past data, the first data point for Twitter is dated January 27th.

Content courtesy of Springer Nature, terms of use apply. Rights reserved
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Questionable VS reliable information sources. We conclude our analysis by comparing the diffusion 
of information from questionable and reliable sources on each platform. We tag links as reliable or question-
able according to the data reported by the independent fact-checking organization Media Bias/Fact  Check34. In 
order to clarify the limits of an approach that is based on labelling news outlets rather than single articles, as for 
instance performed  in33,48, we report the definitions used in this paper for questionable and reliable information 
sources. In accordance with the criteria established by MBFC, by questionable information source we mean a 
news outlet systematically showing one or more of the following characteristics: extreme bias, consistent promo-
tion of propaganda/conspiracies, poor or no sourcing to credible information, information not supported by 
evidence or unverifiable, a complete lack of transparency and/or fake news. By reliable information sources we 
mean news outlets that do not show any of the aforementioned characteristics. Such outlets can anyway produce 
contents potentially displaying a bias towards liberal/conservative opinion, but this does not compromise the 
overall reliability of the source.

Figure 3 shows, for each platform, the plots of the cumulative number of posts and reactions related to reliable 
sources versus the cumulative number of posts and interactions referring to questionable sources. By interactions 
we mean the overall reactions, e.g. likes or other form or endorsement and comments, that can be performed 
with respect to a post on a social platform. Surprisingly, all the posts show a strong linear correlation, i.e., the 
number of posts/reactions relying on questionable and reliable sources grows with the same pace inside the same 
social media platform. We observe the same phenomenon also for the engagement with reliable and questionable 
sources. Hence, the growth dynamics of posts/interactions related to questionable news outlets is just a re-scaled 
version of the growth dynamics of posts/reactions related to reliable news outlets; however, the re-scaling factor 
ρ (i.e., the fraction of questionable over reliable) is strongly dependent on the platform.

In particular, we observe that in mainstream social media the number of posts produced by questionable 
sources represents a small fraction of posts produced by reliable ones; the same thing happens in Reddit. Among 
less regulated social media, a peculiar effect is observed in Gab: while the volume of posts from questionable 
sources is just the ∼ 70% of the volume of posts from reliable ones, the volume of reactions for the former ones 
is ∼ 3 times bigger than the volume for the latter ones. Such results hint the possibility that different platform 
react differently to information produced by reliable and questionable news outlets.

To further investigate this issue, we define the amplification factor E as the average number of reactions to a 
post; hence, E is a measure that quantifies the extent to which a post is amplified in a social media. We observe 
that the amplification EU (for unreliable posts posts produced by questionable outlets) and ER (for reliable posts 

Figure 2.  Growth of the number of authors versus time. Time is expressed in number of days since 1st January 
2020 (day 1). Shaded areas represents [5%, 95%] estimates of the models obtained via bootstrapping least square 
estimates of the EXP model (upper panels) and of the SIR model (lower panels). For details the SIR and the EXP 
model, see SI.

Table 1.  [5%, 95%] interval of confidence R0 as estimated from bootstrapping the least square fits parameter 
of the EXP and of the SIR model. Notice that, due to the steepness of the growth of the number of new authors 
in Instagram, R0 assumes unrealistic values ∼ 10

2 for the SIR model.

Gab Reddit YouTube Instagram Twitter

REXP
0

[1.42, 1.52] [1.44, 1.51] [1.56, 1.70] [2.02, 2.64] [1.65, 2.06]

RSIR
0

[2.2, 2.5] [2.4, 2.8] [3.2, 3.5] [1.1× 102, 1.6× 102] [4.0, 5.1]
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posts produced by reliable outlets) vary from social media platform to social media platform and that assumes 
the largest values in YouTube and the lowest in Gab. To measure the permeability of a platform to posts from 
questionable/reliable news outlets, we then define the coefficient of relative amplification α = E

U/ER . It is a 
measure of whether a social media amplifies questionable ( α > 1 ) or reliable ( α < 1 ) posts. Results are shown in 
Table 2. Among mainstream social media, we notice that Twitter is the most neutral ( α ∼ 1 i.e. EU ∼ E

R ), while 
YouTube amplifies questionable sources less ( α ∼ 4/10 ). Among less popular social media, Reddit reduces the 
impact of questionable sources ( α ∼ 1/2 ), while Gab strongly amplifies them ( α ∼ 4).

Therefore, we conclude that the main drivers of information spreading are related to specific peculiarities of 
each platform and depends upon the group dynamics of individuals engaged with the topic.

Figure 3.  Upper panels: plot of the cumulative number of posts referring to questionable sources versus 
the cumulative number of posts referring to reliable sources. Lower panel: plot of the cumulative number 
of engagements relatives to questionable sources versus the cumulative number of engagements relative 
to reliable sources. Notice that a linear behavior indicates that the time evolution of questionable posts/
engagements is just a re-scaled version of the time evolution of reliable posts/engagements. Each plot indicates 
the regression coefficients ρ , representing the ratio among the volumes of questionable and reliable posts ( ρpost ) 
and engagements ( ρeng ). In more popular social media, the number of questionable posts represents a small 
fraction of the reliable ones; same thing happens in Reddit. Among less popular social media, a peculiar effect 
is observed in Gab: while the volume of questionable posts is just the ∼ 70% of the volume of reliable ones, the 
volume of engagements for questionable posts is ∼ 3 times bigger than the volume for reliable ones. Further 
details concerning the regression coefficients are reported in Methods.

Table 2.  The average engagement of a post is the number of reactions expected for a post and is a measure of 
how much a post is amplified in each social media platform. The average engagement EU (for unreliable post) 
and ER (for reliable post) vary from platform to platform, and are the largest in Twitter and the lowest in Gab. 
The coefficient of relative amplification α = E

U/ER measures whether a social media amplifies more unreliable 
( α > 1 ) or reliable ( α < 1 ) posts. Among more popular social media platforms, we notice that Twitter is the 
most neutral ( α ∼ 1% i.e. EU ∼ E

R ), while YouTube amplifies unreliable sources less ( α ∼ 4/10 ). Among less 
popular social media platforms, Reddit reduces the impact of unreliable sources ( α ∼ 1/2 ) while Gab strongly 
amplifies them ( α ∼ 4).

E
U

E
R α

Gab 5.6 1.4 3.9

Reddit 22.7 40.1 0.55

Twitter 15.1 15.6 0.97

YouTube 1.4× 104 3.9× 104 0.35

Content courtesy of Springer Nature, terms of use apply. Rights reserved



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16598  | https://doi.org/10.1038/s41598-020-73510-5

www.nature.com/scientificreports/

Conclusions
In this work we perform a comparative analysis of users’ activity on five different social media platforms during 
the COVID-19 health emergency. Such a timeframe is a good benchmark for studying content consumption 
dynamics around critical events in a times when the accuracy of information is threatened. We assess user 
engagement and interest about the COVID-19 topic and characterize the evolution of the discourse over time.

Furthermore, we model the spread of information using epidemic models and provide basic growth param-
eters for each social media platform. We then analyze the diffusion of questionable information for all channels, 
finding that Gab is the environment more susceptible to misinformation dissemination. However, information 
deriving from sources marked either as reliable or questionable do not present significant differences in their 
its spreading patterns. Our analysis suggests that information spreading is driven by the interaction paradigm 
imposed by the specific social media or/and by the specific interaction patterns of groups of users engaged with 
the topic. We conclude the paper by computing rumor’s amplification parameters for social media platforms.

We believe that the understanding of social dynamics between content consumption and social media plat-
forms is an important research subject, since it may help to design more efficient epidemic models accounting 
for social behavior and to design more effective and tailored communication strategies in time of crisis.

Methods
Data collection. Table 3 reports the data breakdown of the five social media platforms. Different data col-
lection processes have been performed depending on the platform. In all cases we guided the data collection by 
a set of selected keywords based on Google Trends’ COVID-19 related queries such as: coronavirus, pandemic, 
coronaoutbreak, china, wuhan, nCoV, IamNotAVirus, coronavirus_update, coronavirus_transmission, corona-
virusnews, coronavirusoutbreak.

The Reddit dataset was downloaded from the Pushi ft.io archive, exploiting the related API. In order to filter 
contents linked to COVID-19, we used our set of keywords.

In Gab, although no official guides are available, there is an API service that given a certain keyword, returns 
a list of users, hashtags and groups related to it. We queried all the keywords we selected based on Google 
Trends and we downloaded all hashtags linked to them. We then manually browsed the results and selected a 
set of hashtags based on their meaning. For each hashtag in our list, we downloaded all the posts and comments 
linked to it.

For YouTube, we collected videos by using the YouTube Data API by searching for videos that matched our 
keywords. Then an in depth search was done by crawling the network of videos by searching for more related 
videos as established by the YouTube algorithm. From the gathered set, we filtered the videos that matched 
coronavirus, nCov, corona virus, corona-virus, corvid, covid or SARS-CoV in the title or description. We then 
collected all the comments received by those videos.

For Twitter, we collect tweets related to the topic coronavirus by using both the search and stream endpoint 
of the Twitter API. The data derived from the stream API represent only 1% of the total volume of tweets, further 
filtered by the selected keywords. The data derived from the search API represent a random sample of the tweets 
containing the selected keywords up to a maximum rate limit of 18000 tweets every 10 minutes.

Since no official API are available for Instagram data, we built our own process to collect public contents 
related to our keywords. We manually took notes of posts, comments and populated the Instagram Dataset.

Matching ability. We consider all the posts in our dataset that contain at least one URL linking to a website 
outside the related social media platfrom (e.g., tweets pointing outside Twitter). We separate URLs in two main 
categories obtained using the classification provided by MediaBias/FactCheck (MBFC). MBFC provides a clas-
sification determined by ranking bias in four different categories, one of them being Factual/Sourcing. In that 
category, each news outlet is associated to a label that refers to its reliability as expressed in three labels, namely 
Conspiracy-Pseudoscience, Pro-Science or Questionable. Noticeably, also the Questionable set include a wide 
range of political bias, from Extreme Left to Extreme Right.

Using such a classification, we assign to each of these outlets a binary label that partially stems from the 
labelling provided by MBFC. We divide the news outlets into Questionable and Reliable. All the outlets already 
classified as Questionable or belonging to the category Conspiracy-Pseudoscience are labelled as Questionable, 
the rest is labelled as Reliable. Thus, by questionable information source we mean a news outlet systematically 
showing one or more of the following characteristics: extreme bias, consistent promotion of propaganda/con-
spiracies, poor or no sourcing to credible information, information not supported by evidence or unverifiable, a 

Table 3.  Data breakdown of the number of posts, comments and users for all platforms.

Posts Comments Users Period

Gab 6,252 4,364 2,629 01/01–14/02

Reddit 10,084 300,751 89,456 01/01–14/02

YouTube 111,709 7,051,595 3,199,525 01/01–14/02

Instagram 26,576 109,011 52,339 01/01–14/02

Twitter 1,187,482 – 390,866 27/01–14/02

Total 1,342,103 7,465,721 3,734,815
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complete lack of transparency and/or fake news. By reliable information sources we mean news outlets that do not 
show any of the aforementioned characteristics. Such outlets can anyway produce contents potentially displaying 
a bias towards liberal/conservative opinion, but this does not compromise the overall reliability of the source.

Considering all the 2637 news outlets that we retrieve from the list provided by MBFC we end up with 800 
outlets classified as Questionable 1837 outlets classified as Reliable. Using such a classification we quantify our 
overall ability to match and label domains of posts containing URLs, as reported in Table 4.The matching ability 
that is low doesn’t refer to the ability of identifying known domain but to the ability of finding the news outlets 
that belong to the list provided by MBFC. Indeed in all the social networks we find a tendency towards linking 
to other social media platforms, as shown in Table 5.

Text analysis. To provide an overview of the debate concerning the virus outbreak on the various platforms, 
we extract and analyze all topics related to COVID-19 by applying Natural Language Processing techniques to 
the written content of each social media platform. We first build word embedding for the text corpus of each 
platform, then, to assess the topics around which the perception of the COVID-19 debate is concentrated, we 
cluster words by running the Partitioning Around Medoids (PAM) algorithm on their vector representations.

Word embeddings, i.e., distributed representations of words learned by neural networks, represent words as 
vectors in Rn bringing similar words closer to each other. They perform significantly better than the well-known 
Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) for preserving linear regularities among 
words and computational efficiency on large data  sets49. In this paper we use the Skip-gram  model50 to construct 
word embedding of each social media corpus. More formally, given a content represented by the sequence of 
words w1,w2, . . . ,wT , we use stochastic gradient descent with gradient computed through backpropagation 
 rule51 for maximizing the average log probability

where k is the size of the training window. Therefore, during training the vector representations of closely related 
words are pushed to be close to each other.

In the Skip-gram model, every word w is associated with its input and output vectors, uw and vw , respectively. 
The probability of correctly predicting the word wi given the word wj is defined as

where V is the number of words in the corpus vocabulary. Two major parameters affect the training quality: the 
dimensionality of word vectors, and the size of the surrounding words window. We choose 200 as vector dimen-
sion—that is typical value for training large dataset—and 6 words for the window.

(1)
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(
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)

V
∑
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(
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Table 4.  Number of posts containing a URL, matching ability and classification for each of the five platforms.

Gab Reddit YouTube Instagram Twitter

Posts containing a URL 3,778 10,084 351,786 1,328 356,448

Matched 0.47 0.55 0.035 0.09 0.27

Questionable 0.38 0.045 0.064 0.05 0.10

Reliable 0.62 0.955 0.936 0.95 0.90

Table 5.  Fraction of URLs pointing to social media. Table should be read as entries in each row link to entries 
in each column. For example, Gab links to Reddit 0.003.

Gab Reddit YouTube Instagram Twitter Facebook

Gab 0.003 0.002 0.001 0.002 0.138 ∼ 0

Reddit 0.043 0.006 0.009 0.001 ∼ 0 0

YouTube 0 ∼ 0 0.292 ∼ 0 0.088 0.081

Instagram 0 0 0.003 0 0.001 0.001

Twitter 0.059 0.001 0.257 0.003 ∼ 0 ∼ 0
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Before applying the tool, we reduced the contents to those written in English as detected with cld3. Then we 
cleaned the corpora by removing HTML code, URLs and email addresses, user mentions, hashtags, stop-words, 
and all the special characters including digits. Finally, we dropped words composed by less than three characters, 
words occurring less than five times in all the corpus, and contents with less than three words.

To analyze the topics related to COVID-19, we cluster words by PAM and using as proximity metric the cosine 
distance matrix of words in their vector representations. In order to select the number of clusters, k, we calculate 
the average silhouette width for each value of k. Moreover, for evaluating the cluster stability, we calculate the 
average pairwise Jaccard similarity between clusters based on 90% sub-samples of the data. Lastly, we produce 
word clouds to identify the topic of each cluster. To provide a view about the debate around the virus outbreak, 
we define the distribution over topics �c for a given content c as the distribution of its words among the word 
clusters. Thus, to quantify the relevance of each topic within a corpus, we restrict to contents c with max�c > 0.5 
and consider them uniquely identified as a single topic each. Table 6 shows the results of the text cleaning and 
topic analysis for all the data.

Epidemiological models. Several mathematical models can be used to analyse potential mechanisms that 
underline epidemiological data. Generally, we can distinguish among phenomenological models that emphasize 
the reproducibility of empirical data without insights in the mechanisms of growth, and more insightful mecha-
nistic models that try to incorporate such  mechanisms41.

To fit our cumulative curves, we first use the adjusted exponential model  of43 since it naturally provides an 
estimate of the basic reproduction number R0 . This phenomenological model (from now on indicated as EXP) has 
been successfully employed in data-scarce settings and shown to be on-par with more traditional compartmental 
models for multiple emerging diseases like Zika, Ebola, and Middle East Respiratory  Syndrome43.

The model is defined by the following single equation:

Here, I is incidence, t is the number of days, R0 is the basic reproduction number and d is a damping factor 
accounting for the reduction in transmissibility over time. In our case, we interpret I as the number Cauth of 
authors that have published a post on the subject.

As a mechanistic model, we employ the classical SIR  model44. In such a model, a susceptible population can 
be infected with a rate β by coming into contact with infected individuals; however, infected individuals can 
recover with a rate γ . The model is described by a set of differential equations:

where S is the number of susceptible, I is the number of infected and R is the number of recovered. In our case, 
we interpret the number I + R as the number Cauth of authors that have published a post on the subject.

In the SIR model, the basic reproduction number R0 = β/γ corresponds to the ration among the rate of 
infection by contact β and the rate of recovery γ . Notice that for the SIR model, vaccination strategies correspond 
to bringing the system in a situation where S < N/R0 ; in such a way, both the number of infected will decrease.

To estimate the basic reproduction numbers REXP
0  and RSIR

0  for the EXP and the SIR model, we use least square 
estimates of the models’  parameters42. The range of parameters is estimated via  bootstrapping41,52.

Linear regression coefficients. Table 7 reports the regression coefficient ρ , the intercept and the R2 values 
for the linear fit of Fig. 3. High values of R2 confirm the linear relationship between reliable and questionable 
sources in information diffusion.

(3)I =

[

R0

(1+ d)t

]t

(4)
∂tS = −βS · I/N

∂t I = βS · I/N − γ I

∂tR = γ I

Table 6.  Results of text cleaning and analysis for all the corpora.

Cleaned contents Vocabulary size Topics Contents with max� > 0.5

Instagram 21,189 posts 15,324 17 4,467

Twitter 638,214 posts 22,587 21 369,131

Gab 5,853 posts 3,024 19 2,986

Reddit 10,084 posts 1,968 34 6,686

YouTube 815,563 comments 35,381 30 679,261
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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